Важным признаком противоречащих суждений, в отличие от противоположных, является то, что между ними не может быть третьего, среднего, промежуточного варианта. В силу этого два противоречащих суждения не могут быть одновременно истинными и не могут быть одновременно ложными: истинность одного из них обязательно означает ложность другого, и наоборот, ложность одного обусловливает истинность другого. К противоположным и противоречащим суждениям мы еще вернемся, когда речь пойдет о логических законах противоречия и исключенного третьего.
Рассмотренные отношения между простыми сравнимыми суждениями изображаются схематически с помощью логического квадрата (рис. 32), который был разработан еще средневековыми логиками.
Вершины квадрата обозначают четыре вида простых суждений, а его стороны и диагонали – отношения между ними. Так, суждения вида А и вида I, а также суждения вида Е и вида О находятся в отношении подчинения. Суждения вида А и вида Е находятся в отношении противоположности, а суждения вида I и вида О – частичного совпадения. Суждения вида А и вида О, а также суждения вида Е и вида I находятся в отношении противоречия.
Неудивительно, что логический квадрат не изображает отношение равнозначности, потому что в этом отношении находятся одинаковые по виду суждения, т. е. равнозначность – это отношение между суждениями А и А, I и I, Е и Е, О и О.
Чтобы установить отношение между двумя суждениями, достаточно определить, к какому виду относится каждое из них. Например, надо выяснить, в каком отношении находятся суждения Все люди изучали логику и Некоторые люди не изучали логику. Видя, что первое суждение является общеутвердительным (А), а второе частноотрицательным (О), мы без труда устанавливаем отношение между ними с помощью логического квадрата – это противоречие.
Суждения Все люди изучали логику (А) и Некоторые люди изучали логику (I) находятся в отношении подчинения, а суждения Все люди изучали логику (А) и Все люди не изучали логику (Е) находятся в отношении противоположности.
Как уже говорилось, важным свойством суждений (в отличие от понятий) является то, что они могут быть истинными или ложными. Что касается сравнимых суждений, то истинностные значения каждого из них определенным образом связаны с истинностными значениями остальных. Так, если суждение вида А является истинным или ложным, то три других (I, Е, О), сравнимых с ним суждения (имеющих сходные с ним субъекты и предикаты), в зависимости от этого (от истинности или ложности суждения вида А) тоже являются истинными или ложными.
Например, если суждение вида А: Все тигры – это хищники – истинно, то суждение вида I. Некоторые тигры – это хищники – также истинно (если все тигры – хищники, то и часть из них, т. е. некоторые тигры, – это тоже хищники); суждение вида Е Все тигры – это не хищники – ложно, и суждение вида О: Некоторые тигры – это не хищники – также является ложным. Таким образом, в данном случае из истинности суждения вида А вытекает истинность суждения вида I и ложность суждений вида Е и вида О (разумеется, речь идет о сравнимых суждениях, т. е. имеющих одинаковые субъекты и предикаты).
Чем дальше в лес, тем больше дров (Виды сложных суждений)
В зависимости от союза, с помощью которого простые суждения соединяются в сложные, выделяется пять видов сложных суждений: конъюнктивные, дизъюнктивные, импликативные, эквивалентные и отрицательные суждения.
Конъюнктивное суждение (конъюнкция) – это сложное суждение с соединительным союзом И, который обозначается в логике условным знаком «?». С помощью этого знака конъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а ? b (читается «а и b»), где а и b – это два каких-либо простых суждения. Например, сложное суждение: Сверкнула молния, и загремел гром является конъюнкцией (соединением) двух простых суждений: Сверкнула молния и Загремел гром. Конъюнкция может состоять не только из двух, но и из большего числа простых суждений. Например: Сверкнула молния, и загремел гром, и пошел дождь (а ? b ? с).
Дизъюнктивное суждение (дизъюнкция) – это сложное суждение с разделительным союзом ИЛИ. Вспомним, что, говоря о логических операциях сложения и умножения понятий, мы отмечали неоднозначность этого союза – он может использоваться как в нестрогом (неисключающем) значении, так и в строгом (исключающем). Неудивительно поэтому, что дизъюнктивные суждения делятся на два вида: нестрогая и строгая дизъюнкция соответственно.
Нестрогая дизъюнкция – это сложное суждение с разделительным союзом ИЛИ в его нестрогом (неисключающем) значении, который обозначается знаком «?». С помощью этого знака нестрогое дизъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: a ? b (читается «а или b»), где а и b – это два простых суждения. Например, сложное суждение Он изучает английский, или он изучает немецкий является нестрогой дизъюнкцией (разделением) двух простых суждений: Он изучает английский и Он изучает немецкий. Эти суждения друг друга не исключают, ведь возможно изучать и английский, и немецкий одновременно, поэтому данная дизъюнкция является нестрогой.
Строгая дизъюнкция – это сложное суждение с разделительным союзом ИЛИ в его строгом (исключающем) значении, который обозначается знаком «?_». С помощью этого знака строгое дизъюнктивное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а ?_ b (читается «или а, или b»), где а и b – это два простых суждения. Например, сложное суждение: Он учится в 9 классе, или он учится в 11 классе является строгой дизъюнкцией (разделением) двух простых суждений: Он учится в 9 классе, Он учится в 11 классе. Обратим внимание на то, что эти суждения друг друга исключают, ведь невозможно одновременно учиться и в 9, и в 11 классе (если он учится в 9 классе, то точно не учится в 11 классе, и наоборот), в силу чего данная дизъюнкция является строгой.
Как нестрогая, так и строгая дизъюнкции могут состоять не только из двух, но и из большего числа простых суждений. Например: Он изучает английский, или он изучает немецкий, или он изучает французский (a ? b ? с); Он учится в 9 классе, или он учится в 10 классе, или он учится в 11 классе (a ?_ b ?_ c).
Импликативное суждение (импликация) – это сложное суждение с условным союзом ЕСЛИ…ТО, который обозначается знаком «=>». С помощью этого знака импликативное суждение, состоящее из двух простых суждений, можно представить в виде формулы: а => в (читается «если а, то b»), где а и b – это два простых суждения. Например, сложное суждение Если вещество является металлом, то оно электропроводно представляет собой импликативное суждение (причинно-следственную связь) двух простых суждений: Вещество является металлом и Вещество электропроводно. В данном случае эти два суждения связаны таким образом, что из первого вытекает второе (если вещество – металл, то оно обязательно электропроводно), однако из второго не вытекает первое (если вещество электропроводно, то это вовсе не означает, что оно является металлом).
Первая часть импликации называется основанием, а вторая – следствием; из основания вытекает следствие, но из следствия не вытекает основание. Формулу импликации: а => b, можно прочитать так: «если а, то обязательно b, но если b, то не обязательно а».